TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

JT9673-AS

LCD Display Stopwatch LSI

This product is a single-chip CMOS LSI for stopwatches capable of directly driving a 7 -digit LCD with four signs.

Applications

- Stopwatches

Features

- 32.768 kHz crystal oscillator
- Displays hour, minute, second, and hundredths of seconds
- Four-sign, 7-digit display, 1/3-duty LCD drive
- 5 display modes (RESET, RUN, STOP, LAP, LAP STOP) and optional display modes (NORMAL LAP, SECTION LAP) are selectable by bonding option.
- Counting by 9 hours, 59 minutes, 59 seconds, 99 hundredths of second (units: $1 / 100$ second)
- Power supply: 1.55 V -single power supply
- Built-in voltage doubler circuit
- Low current consumption ($\left.\mathrm{I}_{\text {sup }}=3.0 \mu \mathrm{~A} \max \right)$

Block Diagram

Pin Descriptions (44 pins)

Pin Name	Symbol	No. of Pins
Power Supply Pins	$\mathrm{V}_{\mathrm{DD}}(2), \mathrm{V}_{\mathrm{SS} 1}, \mathrm{~V}_{\mathrm{SS} 2}$	4
Oscillator Pins	$\mathrm{X}_{\mathrm{l}}, \mathrm{X}_{\mathrm{O}}$	2
Input Pins	$\mathrm{S}_{1 \sim 3}, \mathrm{SL}_{1 \sim 3}$	6
Output Pin	BUZZ	1
Display Pins	$\mathrm{COM}_{1 \sim 3}, \mathrm{SEG}_{(22)}$	25
Test Pins	$\mathrm{T}_{1 \sim 4}$	4
Voltage Doubler Pins	$\mathrm{FAl}_{1}, \mathrm{FAl}_{2}$	2

Pad Layout

Note 1: Be sure to connect the VDD (MAIN).

Pin Name	X Point	Y Point	Pin Name	X Point	Y Point
SEG 1	-1067	-618	SEG21	1067	618
SEG_{5}	-1067	-455	SEG20	1067	455
SEG6	-1067	-292	SEG16	1067	292
SEG_{7}	-1067	-129	SEG15	1067	130
SEG11	-1067	33	SEG14	1067	-33
SEG 12	-1067	196	SEG 10	1067	-196
SEG13	-1067	359	SEG9	1067	-359
SEG 17	-1067	522	SEG_{8}	1067	-522
SEG18	-1067	684	SEG_{4}	1067	-684
SEG19	-1067	847	SEG_{3}	1067	-847
COM_{3}	-1067	1010	SEG_{2}	1067	-1010
COM_{2}	-618	1067	T4	618	-1067
COM_{1}	-455	1067	T3	455	-1067
FAl_{1}	-292	1067	T2	292	-1067
FAl_{2}	-129	1067	T_{1}	130	-1067
$\mathrm{V}_{\text {SS2 }}$	33	1067	SL_{1}	-33	-1067
XI_{1}	196	1067	$\mathrm{V}_{\text {DD }}$ (SUB)	-196	-1067
X_{0}	359	1067	SL_{2}	-359	-1067
$\mathrm{V}_{\text {DD }}$ (MAIN)	522	1067	SL_{3}	-522	-1067
BUZZ	684	1067	S_{1}	-684	-1067
VSS1	847	1067	S_{2}	-847	-1067
SEG22	1010	1067	S_{3}	-1010	-1067

Function Specifications

1. LCD Segment Pattern

	COM_{1}	COM_{2}	COM_{3}		COM_{1}	COM_{2}	COM_{3}
SEG_{1}	Lap	Section 1	Standard 1	SEG 12	4d	4 g	4a
SEG2	Stop	7 e	7 f	SEG13	4 p	4c	4b
SEG_{3}	7d	7 g	7a	SEG 14	-	3 e	3 f
SEG_{4}	7p	7c	7b	SEG15	3d	3 g	3a
SEG_{5}	-	6 e	6 f	SEG16	3p	3c	3b
SEG_{6}	6d	6 g	6 a	SEG17	Standard 2	2 e	$2 f$
SEG_{7}	6 p	6 c	6 b	SEG18	2d	2 g	2a
SEG8	-	5 e	$5 f$	SEG19	2p	2c	2b
SEG9	5d	5 g	5a	SEG20	-	1 e	1 f
SEG 10	5 p	5c	5b	SEG21	1d	1 g	1a
SEG 11	Section 2	4 e	4f	SEG22	1 p	1c	1b

2. LCD Drive Waveform

3. Display Modes

(A) $1 / 100$ second display $\begin{array}{llll}\text { (} & \text { Bours } & \text { Minutes } & \text { Seconds } 1 / 100 \text { seconds } \\ 5\end{array}$
(B) $1 / 10$ second display $\left[\begin{array}{lll}\text { Bours } & \text { Minutes } & \text { Seconds } 1 / 10 \text { seconds }\end{array}\right.$
Selected by SL1. (See 7. Type Selection Function below.)

4. Display Sequence

The display returns from 9 hours, 59 minutes, 59 seconds, $991 / 100$ seconds, to 0 hours, 00 minutes, 00 seconds 00 and counting continues.
5. Display Example

6. Input Setting

$\mathrm{S}_{1}, \mathrm{~S}_{2}$, S3: Normally all pulled down to the VSS1 level by IC internal pull-down resistance. $\mathrm{S}_{1}, \mathrm{~S}_{2}$, and S_{3} perform their specified functions when connected to the VDD by an external switch.
SL_{1}, SL2, SL3: Normally, all pulled down to the VSS1 level by IC internal pull-down resistance.
Setting the level of the pins externally allows functions to be selected
$T_{1}, T_{2}, T_{3}, T_{4}$: Normally, all pulled up to the VDD level by IC internal pull-up resistance. Used for IC testing.

7. Type Selection Function

SL_{1}	SL_{2}	SL_{3}	Type	
0	-	-	A Type (1/100 seconds display)	
1	-	-	B Type (1/10 seconds display)	
-	0	0	C Type	
See 8. Mode Sequence.				
-	1	0	D Type	
-	0	1	E Type	
-	1	1	F Type	

Note 2: '0' indicates input is OPEN or connect to VSS1.
'- ' indicates don't care.

8. Mode Sequence

(1) C type

Starts functioning on the rising edge of S_{1} and S_{2}
(2) D type

(3)
E type

（4）F type

STANDARD LAP mode

SECTION LAP mode

－ S_{3} toggles between STANDARD LAP mode and SECTION LAP mode．
－In SECTION LAP mode，when switched from RUN to LAP，the counter is immediately reset to＇ 0 ＇．
－When switched from SECTION LAP mode to NORMAL LAP mode by pressing S3，the counter is not reset to＇ 0 ＇．

9．Display Column Table

Display	Digit Segment							Dot Segment							Sign			
Mode	7	6	5	4	3	2	1	7P	6P	5P	4P	3P	2P	1P	Lap	Stop	Stan－ dard	Sec－ tion
Reset	\square	\square	\square	\square	\square	（－）	(ㅁ)	\bullet	（1）		ヘ						（1）	\wedge
Run	Hour	$\begin{array}{\|c\|} \hline 10 \\ \text { min- } \\ \text { utes } \end{array}$	$\begin{gathered} 1 \\ \text { min- } \\ \text { ute } \end{gathered}$	$\begin{gathered} 10 \\ \text { sec- } \\ \text { onds } \end{gathered}$	$\begin{gathered} 1 \\ \text { sec- } \\ \text { ond } \end{gathered}$			－	（1）		ヘ						（1）	\wedge
Stop	Hour	$\begin{gathered} 10 \\ \text { min- } \\ \text { utes } \end{gathered}$	$\begin{gathered} 1 \\ \min - \\ \text { ute } \end{gathered}$	$\begin{gathered} 10 \\ \text { sec- } \\ \text { onds } \end{gathered}$	$\begin{array}{\|c\|} \hline 1 \\ \text { sec- } \\ \text { ond } \end{array}$	$\begin{gathered} 1 / 10 \\ \text { second } \end{gathered}$	$\begin{gathered} 1 / 100 \\ \text { second } \end{gathered}$	\bullet	（1）		ヘ					\bullet	（1）	\uparrow
Lap	Hour	$\begin{gathered} 10 \\ \text { min- } \\ \text { utes } \end{gathered}$	$\begin{gathered} 1 \\ \text { min- } \\ \text { ute } \end{gathered}$	$\begin{gathered} 10 \\ \text { sec- } \\ \text { onds } \end{gathered}$	$\begin{array}{\|c\|} \hline 1 \\ \text { sec- } \\ \text { ond } \end{array}$	（－）	$\left\|\begin{array}{c} (1 / 10 \\ \text { second }) \end{array}\right\|$	－	（1）		1				\bigcirc		（1）	\wedge
Lap Stop	Hour	$\begin{array}{\|c\|} \hline 10 \\ \text { min- } \\ \text { utes } \end{array}$	$\begin{gathered} 1 \\ \text { min- } \\ \text { ute } \end{gathered}$	$\begin{gathered} 10 \\ \text { sec- } \\ \text { onds } \end{gathered}$	$\begin{array}{\|c\|} \hline 1 \\ \text { sec- } \\ \text { ond } \end{array}$			\bullet	（1）		ヘ				\bullet	－	（1）	\uparrow

Note 3：When $1 / 10 \mathrm{~s}$ type is selected，only the first and second column displays are different．The display is as in the parentheses（ ）．

Note 4：＇•＇indicates＇lit＇．（7P always lit）
Note 5：＇o＇indicates flashing at 1 Hz ．
Note 6：In the F type only，＇（1）＇flashes at 1 Hz when STANDARD LAP mode is selected．
Note 7：In the F type only，＇ 1 ＇flashes at 1 Hz when SECTION LAP mode is selected．
Note 8：1P，2P，3P，and 5P do not light．

10. Chattering Prevention Function

A chattering prevention circuit is provided for the S_{1}, S_{2}, and S_{3} inputs. The input waveform shown below does not cause malfunction.

$\mathrm{T}_{\mathrm{ch}}<31.25 \mathrm{~ms}$
TON, OFF $\geqq 31.25 \mathrm{~ms}$

11. Buzzer Drive Function

Pressing S_{1} or S_{2} turns the buzzer drive circuit $O N$ for around $30 \sim 60 \mathrm{~ms}$. The drive frequency is 4 kHz .

12. Autoclear Circuit

An autoclear circuit is incorporated for when the power supply is switched ON, at which time the counter reads " 0 " and RESET mode is selected. (to operate the autoclear circuit more dependably, externally attach a capacitor between T_{2} and $\mathrm{V}_{\mathrm{SS} 1}$.)

13. Input Circuit Setting Error

The S_{1}, S_{2} switch input circuit operates on the first rising edge of the input. The error for one switching is a maximum of $1 / 100$ second.

14. Test Functions

T_{1}	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$	$\mathrm{~T}_{4}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	
1	1	1	1	0	0	Normal
1	0	-	-	-	-	All clear
0	$\phi \mathrm{~T}_{2}$	-	-	-	-	Acceleration from the 256 Hz stage using $\phi \mathrm{T}_{2}$
-	-	0	0	1	0	Output 100 Hz to BUZZ pin
-	-	0	0	0	1	+1 h by S_{2}
-	-	1	0	1	-	+10 mins by S_{1}
-	-	1	0	-	1	+1 min by S_{2}
-	-	0	1	1	-	+10 s by S_{1}
-	-	0	1	-	1	+1 s by S_{2}
-	-	0	0	1	1	LCD all lit, BUZZ output (H level)

Note 9: When $T_{3}=0$ or $T_{4}=0$, the normal functions of S_{1} and S_{2} are disabled.
Note 10: An ALL CLEAR sets to RESET mode (0 hours, 00 minutes, 00 seconds, 00 1/100 seconds).

15. All Clear Function

When power is applied or when the supply of power is interrupted (e.g. if the battery is changed), the internal state of the IC may become unstable, even though it appears to be operating normally. For this reason it is vital to verify that the crystal oscillation circuit is oscillating normally ant stably (at 32 kHz) and then to use the system reset pin to initialize the IC (i.e. clear it) before use.
Note that a clear operation using the built-in power-on clear circuit should not be used in this case.

Maximum Ratings (if no temperature stipulations, $\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Characteristics	Symbol	Rating	Unit
Power supply voltage (1)	$\mathrm{V}_{\mathrm{SS} 1}-\mathrm{V}_{\mathrm{DD}}$	$-3.0 \sim 0.2$	V
Power supply voltage (2)	$\mathrm{V}_{\mathrm{SS} 2}-\mathrm{V}_{\mathrm{DD}}$	$-4.5 \sim 0.2$	V
Input voltage (1)	$\mathrm{V}_{\text {IN1 }}$	$\mathrm{V}_{\mathrm{SS} 1}-0.2 \sim \mathrm{~V}_{\mathrm{DD}}+0.2$	V
Input voltage (2)	$\mathrm{V}_{\text {IN2 }}$	$\mathrm{V}_{\mathrm{SS} 2}-0.2 \sim \mathrm{~V}_{\mathrm{DD}}+0.2$	V
Output voltage (1)	$\mathrm{V}_{\mathrm{OUT} 1}$	$\mathrm{~V}_{\mathrm{SS} 1}-0.2 \sim \mathrm{~V}_{\mathrm{DD}}+0.2$	V
Output voltage (2)	$\mathrm{V}_{\mathrm{OUT}}$	$\mathrm{V}_{\mathrm{SS} 2}-0.2 \sim \mathrm{~V}_{\mathrm{DD}}+0.2$	V
Operating temperature	$\mathrm{T}_{\mathrm{Opr}}$	$-10 \sim 60$	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {Stg }}$	$-40 \sim 125$	${ }^{\circ} \mathrm{C}$

Electrical Characteristics
(unless otherwise stated, $\mathrm{V}_{\mathrm{DD}}=0.00 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS} 1}=-1.55 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS} 2}=-3.00 \mathrm{~V}, \mathrm{C}_{\mathrm{G}}=20 \mathrm{pF}$, $\mathrm{C}_{\mathrm{D}}=$ built-in (10 pF), $\mathrm{C}_{\mathrm{IMAX}}=21 \mathrm{k} \Omega, \mathrm{F}_{\mathrm{o}}=32768 \mathrm{~Hz}$)

Characteristics	Symbol	Test Circuit	Test Condition		Min	Typ.	Max	Unit
Operating voltage	$\left\|\mathrm{V}_{\mathrm{SS} 1}-\mathrm{V}_{\mathrm{DD}}\right\|$	3		-	1.25	1.55	1.80	V
Operating current consumption	$\left\|I_{\text {sup }}\right\|$	2	No LCD load		-	-	3.0	$\mu \mathrm{A}$
Oscillation start voltage	$\left\|\mathrm{V}_{\text {STA }}\right\|$	3	tsta 10 s		-	-	1.40	V
Output current (1)	$\mathrm{l}_{\mathrm{OH} 1}$	4	$\mathrm{V}_{\mathrm{OH} 1}=-0.2 \mathrm{~V}$		-	-	-0.5	$\mu \mathrm{A}$
Segment	IOL1	4	$\mathrm{V}_{\mathrm{OL} 1}=-2.8 \mathrm{~V}$		0.5	-	-	
Output current (2)	$\mathrm{l}_{\mathrm{OH} 2}$	4	$\mathrm{V}_{\mathrm{OH} 2}=-0.2 \mathrm{~V}$		-	-	-4.0	$\mu \mathrm{A}$
Common	IOL2	4	$\mathrm{V}_{\mathrm{OL} 2}=-2.8 \mathrm{~V}$		4.0	-	-	
Output current (3) Buzzer	$\mathrm{IOH}^{\text {a }}$	4	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{SS} 1}= \\ -1.25 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{SS} 2}=-2.8 \mathrm{~V} \end{array}\right.$	$\mathrm{V}_{\mathrm{OH} 3}=-0.5 \mathrm{~V}$	-	-	-100	$\mu \mathrm{A}$
	lol3	4		$\mathrm{V}_{\mathrm{OL} 3}=-0.75 \mathrm{~V}$	100	-	-	
Input current (1)	$\mathrm{I}_{\mathrm{IH} 1}$	4	$\mathrm{V}_{\mathrm{IH} 1}=0 \mathrm{~V}$		1.55	-	20.0	$\mu \mathrm{A}$
$\mathrm{S}_{3}, \mathrm{SL}_{1}, \mathrm{SL}_{2}, \mathrm{SL}_{3}$	IIL1	4	$\mathrm{V}_{\mathrm{IL} 1}=-1.55 \mathrm{~V}$		-0.1	-	-	
Input current (2)	$\mathrm{I}_{\mathrm{H} 2}$	4	$\mathrm{V}_{\mathrm{IH} 2}=0 \mathrm{~V}$		-	-	0.1	$\mu \mathrm{A}$
$\mathrm{T}_{1}, \mathrm{~T}_{3}, \mathrm{~T}_{4}$	IIL2	4	$\mathrm{V}_{\mathrm{IL} 2}=-1.55 \mathrm{~V}$		-	-50	-	
Input current (3)	$\mathrm{I}_{\mathrm{H} 3}$	4	$\mathrm{V}_{1 \mathrm{H} 3}=0 \mathrm{~V}$		-	-	0.1	$\mu \mathrm{A}$
	IIL3	4	$\mathrm{V}_{\text {IL3 }}=-1.55 \mathrm{~V}$		-15.5	-	-	
Input current (4)	$\mathrm{I}_{\mathrm{H} 4}$	4	$\mathrm{V}_{\mathrm{IH} 4}=0 \mathrm{~V}$		15.5	-	150	$\mu \mathrm{A}$
$\mathrm{S}_{1}, \mathrm{~S}_{2}$	IIL4	4	$\mathrm{V}_{\mathrm{IL} 4}=-1.55 \mathrm{~V}$		-0.1	-	-	
Voltage doubler output	$\left\|V_{\text {uco }}\right\|$	2	$\mathrm{C}_{1}=\mathrm{C}_{2}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=3 \mathrm{M} \Omega$		3.0	-	-	V

Test Circuit

1. Oscillation Circuit

X'tal
$\mathrm{R}_{\mathrm{S}}=21 \mathrm{k} \Omega$
$\mathrm{F}_{\mathrm{O}}=32.768 \mathrm{kHz}$
$\mathrm{C}_{\mathrm{G}}=20 \mathrm{pF}$
$\mathrm{C}_{\mathrm{D}}=10 \mathrm{pF}$ built in
2. Measuring $I_{\text {sup }}$ and $V_{U c O}$

3.

4.

When measuring $\mathrm{SL}_{1}, \mathrm{SL}_{2}$, SL_{3}, set T_{2} to VSS_{1}.

Application Circuit Example

Note 11: Be sure to connect the $V_{D D}$ (MAIN).

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

